
POP-2
REFERENCE
MANUAL

BY

R. M. BURSTALL
AND
R. J. POPPLESTONE
DEPARTMENT OF MACHINE INTELLIGENCE AND PERCEPTION
UNIVERSITY OF EDINBURGH

CONTENTS

PAGE

1 INTRODUCTION
1.1 Aims 209
1.2 Main features 209
1.3 Examples 210
1.4 Notation for syntactic description 212
1.5 Notation for functions 213

2 ITEMS
2.1 Simple and compound items 214
2.2 Integers 215
2.3 Reals 215
2.4 Truth values 216
2.5 Undefined 216
2.6 Terminator 216

3 VARIABLES
3.1 Identifiers 216
3.2 Declaration and initialisation 217
3.3 Cancellation 219

4 FUNCTIONS
4.1 Definition of functions 219
4.2 Application of functions 220
4.3 Nonlocal variables 221
4.4 Partial application 221
4.5 Doublets 223
4.6 Arithmetic operations 224

5 EXPRESSIONS AND STATEMENTS
5.1 Expressions 224
5.2 Precedence 226
5.3 Statements and imperatives 226
5.4 Labels and goto statements 227

207

CONTENTS

5.5 Assignment
5.6 Comments

6 CONDITIONALS
6.1 Conditional expressions
6.2 Conjunctions and disjunctions

7 DATA STRUCTURES
7.1 Functions of data structures
7.2 Records
7.3 Strips
7.4 Garbage collection

8 STANDARD STRUCTURES
8.1 References
8.2 Pairs
8.3 Lists
8.4 Full strips and character strips
8.5 Arrays
8.6 Words
8.7 Functions

PAGE

228
229

229
230

231
233
234
235

236
236
236
239
239
240
241

9 INPUT AND OUTPUT
9.1 Input 242

9.2 Output 243

10 MACHINE CODE 244

11 MODES OF EVALUATION
11.1 Immediate ,evaluation 244
11.2 Macros 244
11.3 Evaluation of program text 245

Acknowledgments 245

208

1. INTRODUCTION

1.1. Aims
The following are the main design objectives for the POP-2 language:

(i) The language should allow convenient manipulation of a variety of
data structures and give powerful facilities for defining new functions over
them.

(ii) The language should be suitable for taking advantage of on-line use
at a console, i.e. it should allow immediate execution of statements and
should have a sufficiently simple syntax to avoid frequent typing errors.

(iii) A compiler and operating system should be easy to write and should
not occupy much storage.
(iv) The elementary features of the language ,should be easy to learn and

use.
(v) The language should be sufficiently self-consistent and economical in

structure to allow it to incorporate new facilities when extensions are desired.

In attaining these objectives certain other desirable features of program-
ming languages had to be relegated to secondary importance:

(vi) Fast arithmetical facilities on integer and real numbers.
(vii) Fast subscripting of arrays.
(viii) A wide variety of elegant syntactic forms.

Naturally whether (iii) or (vi) and (vii) are attained is to a considerable
extent a matter of implementation.

1.2. Main features
The following main features are provided. Roughly analogous features of
some other programming languages are mentioned in brackets as a guide:

(i) Variables (cf. ALGOL but no types#at compile time).
(ii) Constants (cf. ALGOL numeric and string constants, LISP atoms and list

constants).
209

PROBLEM-ORIENTED LANGUAGES

(iii) Expressions and statements (cf. ALGOL).
(iv) Assignment (cf. ALGOL, also CPL left-hand functions).
(v) Conditionals, jumps and labels (cf. ALGOL but restrictions on jumps

and labels).
(vi) Functions (cf. ALGOL procedures but no call by name, cf. CPL and

'swim for full manipulation of functions).
(vii) Arrays (cf. ALGOL; cf. CPL for full manipulation of arrays).
(viii) Records (cf. COBOL, PL/l, Wirth-Hoare ALGOL records, CPL nodes).

(ix) Words (cf. LISP atoms).
(x) Lists (cf. LISP, IPL-V).
(xi) Macros.
(xii) Use of compiler during running (cf. LISP, TRAC, FORMULA ALGOL).

(Xiii) Immediate execution (cf. JOSS, TRAC).

Notes:

LISP: LISP 1.5
CPL: See Barron, D. W., etal. 1964. The main features of CPL, Computer

J., 6, 134-43.
CPL reference manual. Edited C. Strachey (privately circulated).
Wirth-Hoare ALGOL: See Wirth, N., and Hoare, C. A. R. 1966. A con-

tribution to the development of Algol, Communs Assn Comput. Mach.,

9, 413-32.
mc: See Mooers, C. N. 1966. TRAC, a procedure describing language

for the reactive typewriter, Communs Assn Comput. Mach., 9, 215-24.
iswm: See Landin, P. J. 1966. The next 700 programming languages,

Communs Assn Comput. Mach., 9, 157-166.

1.3. Examples
The following is an example of pop-2 program text. The sign (not to be
confused with that used in section 1.5 'Notation for functions') prints out

some results on a newline prefixed with two asterisks. These results are

included in the text below, as they would appear if the program were run
on-line at a console.

comment arithmetic;
12.0+ 2.5*(1.5 -I- 2.5).
**22.0
vars a b sum;
2*2—+a; 3*a—*b; a*a+b*b—osum; sum
**160
function sumsq x y;

x*x+y*y
end;
sumsq(a, b)+1
**161

210

BURSTALL AND POPPLESTONE

function fact n; vars p;
1-0p;

loop: if n=0 then p else n*p-op; n goto loop close
end;
fact(fact(3))
** 720

comment arrays;
vars a if;
10-31; 20-tj;
newarray([%1, i, 1, j%], sumsq)-4a;
a(2,
** 13
10-■a(2, 3); a(2,
** 10
function arraysum al a2 m n;

newarray ([%1, m, 1, n%], lambda if; al(i, j)+a2(i, j) end)
end;
arrays= (a, a, 10, 20)-oa; a(2,
** 20
comment lists;
vars u;
1-41; 2--tj;
[%i, i+j, "dog", "cat" %] -'u;
** [1 3 dog cat]
cons ("pig", u)-
** [pig 1 3 dog cat]
function appencla y;

if null (y) then [% x Y.] else cons(hd(y), append(x, tl(y))) close
end;
append(4, [% 1, 1+1, 3%])=
** [1 2 3 4]

comment records;
vars consper destper forename surname male pl p2;
recordfns("person", 500, [0 0 1])-. male-' surname-'forename

-0 destper-■ consper;
comper("jane", "Jones", false)-opl; consper("sam", "smith", true)-y2;
surname(p1)
** ,/ones
datalist(p1)=.
** [Jane Jones 0]
routine marry x y;

if male(x) and not(male(y)) then surname(x)--Psurname(y) close
211

PROBLEM-ORIENTED LANGUAGES

end;
marry(p2, pl); datalist(p1)
** [jane smith 0]

1.4. Notation for syntactic description

We use the BNF (Backus-Naur Form) notation as used in the ALGOL report:

= indicates a syntax definition;
< > are used to enclose the name of a syntax class;
I denotes disjunction (union of syntax classes).

Concatenation denotes concatenation of any elements of two syntax

classes.
We also use a convenient extension of this notation due to R. A. Brooker:

* means that a class may occur n times, n> 1;
? means that a class may occur n times, n=0 or 1;
*7 means that a class may occur n times, n 0,

e.g. the definitions

<astring>::=<a> <astring> I <a>
<bstring>::= <astring>
<cstring>::=<c> <astring> I <c>

may be replaced by

<bstring>::= <a*>
<cstring>::=<c> <a*?>

The characters <, > and * are used in the pop-2 reference language but no

confusion should arise.
When we wish to give examples of a syntax class we use the symbol

'e.g.:: =', for example.:

<bstring>e.g.::= <a> I <a> <a> <a>

The character set of the pop-2 reference language is as follows.

<letter>::=alblcIdlel I 1011 j1kIllmInlolplqirlsItluIvIwIxlyiz
<digit>::=0I11213141516171819

<sign>::= +I-14,111$18d=1<l>l:ILIT
<separator>::=,1;
<period>::=.
<sub ten>::=10
<bracket>::=(1)I[1]
<bracket decorator>::= %
<quote>="
<string quote>::= /I\

212

BURSTALL AND POPPLESTONE

Letters may be written in lower case, upper case or heavy type without any
change of meaning. It will be conventional however to use heavy type letters
for syntax words, i.e. those identifiers such as function, then, end and cancel
which have a special meaning for the pop-2 compiler and which characterise
certain syntactic forms.
Spaces, tabulate and new lines terminte dentifiers, integers, reals and words

but otherwise they are ignored.
A distinction is made between the reference language used in this document

and a number of possible hardware languages used by particular computer
implementations of Pop-2. Each character in the reference language should
be represented by a distinct character or sequence of characters in the hard-
ware language. A particular letter, whether upper case, lower case, heavy
type or not is regarded as the same character in the reference language.
The symbols and used in this paper should be read as a typographical

abbreviation for the pairs of characters —> (minus greater than) and
= > (equals greater than) respectively.

1.5. Notation for functions
It is convenient to have a notation to specify the domain and range of func-
tions. We will consider functions having several arguments (or possibly
none) and producing several results (or possibly none), the notion of functions
with more than one result being an extension of normal mathematical usage
(see section 4.2 'Application of functions'). We introduce a special symbol

which is not to be confused with any identifier in the pop-2 language.
Suppose dl, d2, , dm and r 1, r2, , rn are all sets of items. Then

dl, d2, , r2, , rn is the set of all functions whose domain is
dl, d2, ,dm and range r 1 , r2, • ,rn, i.e. with arguments which are m-tuples
in dl x d2 x x din and with results which are n-tuples in r 1 x r2 x rn. We
express the fact that a function f is a member of this set of functions by

f e dl, d2, , dm rl, r2, , rn

Some examples will make this clear.

add E integer, integer integer
divreni E integer, integer integer, integer

where divrem is 'divide with remainder', e.g. divrem (7, 3)= 2, 1 and divrem
(14, 4)=3, 2

roundup e real integer
prime e integer truthvalue

If the function has no results we use an empty pair of parentheses, thus:
printout e integer

The arguments or results#20may themselves be functions

differentiate e (real real) (real real)
213

PROBLEM-ORIENTED LANGUAGES

Where we wish to discuss a number of functions all having the same domain
and range it is convenient to abbreviate thus:

f, g, h all e

for

f
and

g e

and
h e

Some functions do not have a fixed number of arguments and some do
not have a fixed number of results (see section 4.2 'Application of functions').
In such cases we may write for example

i.e integer real, integer, ... , integer

for the domain or range, meaning that a real and a variable number of integers
are the results.

2. ITEMS

2.1. Simple and compound items

The objects on which one can operate are called Items. They are divided into
two distinct classes: Compound items, which are represented by addresses and
Simple items which are directly represented by bitstrings which do not con-
tain addresses (these bit strings are normally of fixed length for a given imple-
mentation, being a single machine word). The address representing a com-
pound item points to a bit string whose length may vary from item to item.
This bit string may contain other items. The areas of store immediately
pointed to by two different compound items do not overlap.
The following standard function recognises compound items:

iscompnd e item truthvalue

Two kinds of simple item are distinguished: integers and reals. The
following standard functions recognise them:

isinteger, isreal all e item truth value

The standard function = (an operation of precedence 7) is used to represent
equality of items. For integers and reals it has the usual meaning. Its
meaning for compound items is given in section 7.1 'Functions of data
structures'.

= e item, item truthvalue
214

BURSTALL AND POPPLESTONE

2.2. Integers
Integers are simple items. They may be positive, negative or zero. The size
of the largest and smallest integers allowed depends on the implementation.
The#following functions on integers are standard:

intadd, intsub, intmult, all E integer, integer integer
// e integer, integer integer, integer

intplus, intminus all e integer integer.
intsign E integer integer
intgr, mile, intgreq, intleeq all E integer, integer truthvalue

intadd, intsub, intmult and intdiv are the usual add, subtract and multiply.
// is divide with remainder and produces a quotient and a remainder (if al/b
is (q, r), then q*b+ r =a and 0.4 r<b). It is an operation of precedence 4.

intplus carries an integer into itself and intminus complements an integer.
intsign produces — 1, 0, or + 1 according to the sign of the integer. The
remaining four functions are the relations 'greater than', 'less than', 'greater
than or equal#to' and 'less than or equal to'.
The syntax of integers is:

<integer>::=<octal integer>l<binary integer>l<decimal integer>
<octal integer>::= 8:<octal digit*>
<binary integer>::= 2:binary#2digit*>
<decimal integer>::=<digit*>
<octal digit>::=011121314151617
<binary digit>::= 011

Example:

<integer>e.g.::= 8:77712:1011016559

Integers may also be treated as bit-strings (the length depending on the
implementation) and the following functions are standard:

logand, logor, logshift all e integer, integer integer
lognot e integer integer

logand and logor are the usual bit by bit 'and' and 'inclusive or'; logs/ft
causes the first integer to be shifted left by the number of places given in the
second, unless the second integer is negative when shifting to the right takes
place (all new bits to fill up the end are zero in each case).

2.3. Reals
Reals are simple items. They may be positive, negative or zero. The size of
the largest and smallest reals allowed and the precision depends on the imple-
mentation. The following functions on reals are standard:

realadd, realsub, realmult, realdiv all e real, real real
realplus, realm inus all e real real
realsign e real integer
realgr, realle, realgreq, realleeq all e real, real truth value

215

PROBLEM-ORIENTED LANGUAGES

These are the usual add, subtract, multiply and divide on reals. realplus
carries a real into itself and realminus complements a real. realsign produces
—1, 0 or +1 according to the sign of the real. The remaining four functions
are the relations 'greater than', 'less than', 'greater than or equal to' and
'less than or equal to'.

There are also operations to convert a real to the nearest integer and to
convert an integer to real:

intof e real integer
realof e integer real

The syntax of reals is as follows:

<real>::=<decimal integer ?>.<decimal integer> <exponent ?>
<exponent>::=10+<integer>110— <integer> I io<integer>

Example:

<real>e.g.::= .511.9911.510-6

2.4. Truth values
The two items True which is the integer 1 and False which is the integer 0 are
called Truthvalues. • •
On entry#to the pop-2 system the standard variable true is set to 1 and the

standard variable false is set to 0. The following standard functions on
truthvalues are provided:

hooland, boolor all e truthvalue, truthvalue truthvalue
not e truthvalue truthvalue

These are the usual functions 'and', 'inclusive or' and 'not' of propositiona
calculus.

2.5. Undefined
The standard variable undef has the word "under as its value on entry to
the pop-2 system (see section 8.6 Words'). The programmer may use it as
the result of a function which fails to produce its normal result.

2.6. Terminator
The standard variable term in has the word "termini' as its value on entry to the
,pop-2 system (see section 8.6 Words'). It may be used as the first argument
of a variadic function (see section 4.2 'Application of functions') or to mark
the end of an input file (see section 9.1 'Input').

3. VARIABLES

3.1. Identifiers
An item may be the Value of a Variable (a variable is not itself an item).
An Identifier is associated with the variable and this identifier is used to

216

BURSTALL AND POPPLESTONE

refer to it in a pop-2 program. A number of distinct variables may have
the same identifier, but only one of them is Currently associated with it at a
particular time in the evaluation process.
An identifier may be restricted to a certain range of values and it may be

given special syntactic properties by being given a precedence (see section 5.2
'Precedence').
The syntax of identifiers is:

<identifier>::=<letter> <alphanumeric *1> I <sign 4.>
<alphanumeric>:: = <letter> I <digit>

Example:

gdentifier>e.g. ::=x I y99 I alpha I u2a I +++ 11+ I 0 I * $ $ *
Syntax words such as then, end, and : have special meanings and may

not be used as identifiers. Only the first 8 characters are significant.

3.2. Declaration and initialisation
A variable is either Global, Local or Formal. A Declaration is used to
introduce an identifier and associate it with a global or local variable. A
Local Declaration, introducing a local variable, is a declaration which occurs
in a function body. A Global Declaration, introducing a global variable, is
one which does not.
An Initialisation is used to introduce an identifier and associate it with a

formal variable and give the variable an initial value. It is achieved by
including the identifier in the formal parameter list of a function (see section
4.1 'Definition of functions').
A declaration or initialisation may also specify that the identifier is restric-

ted to take only functions as values. This is not necessary but may make the
implementation more efficient. A declaration or initialisation may also
specify that the identifier is an Operation, i.e. it is restricted to take functions
as its values and is given a precedence. This restriction is associated with
the unique name (see below) produced by the declaration or the initialisation.
The syntax of declarations is:

<declaration>::=vars <declaration list element 4.>
<declaration list element>::= <identifier> I <restriction>
<restriction>::=<restrictorXidentifier> I <restrictor>(<identifier *>)
<restrictor>::= function I operation <integer>

Example:

<declaration>e.g.::=vars x y I vars x y function(f g) operation 7 = =

A declaration or initialisation has a Scope, which is a piece of pop-2 text.
An identifier may not be used to represent a variable outside the scope of a
declaration or initialisation of the identifier.

217

PROBLEM-ORIENTED LANGUAGES

The scope of a global declaration starts at the declaration and continues

until the identifier is cancelled.
The scope of a local declaration starts at the declaration and continues to

the end of the innermost function body enclosing it.
The scope of an initialisation is the body of the function in which it occurs.

Each declaration or initialisation gives rise to a unique mark and this

mark is associated with all occurrences of any identifier introduced by the

declaration or initialisation within the scope of the declaration or initialis-

ation. An identifier together with its unique mark is called a Unique name.

Thus an identifier which occurs in more than one declaration or initialis-

ation corresponds to more than one unique name.
The generation of fresh unique names for identifiers can be suppressed by

using the standard routines:
nonunique, unique all e 0

If nonunique is applied, all declarations or initialisations of a given identifier

until unique is applied will give rise to the same unique name. This may save

storage space and can be used when no confusion is liable to occur.
To sum up:
A new identifier is introduced by introducing a fresh sequence of

characters.
A new unique name is introduced by#each declaration or initialisation

(unless nonunique has been applied).
A new variable is introduced by each dynamic activation of a declaration

or initialisation.
A variable has an Extent which is a sequence of evaluations of expressions

and statements.
The extent of a global variable starts from its declaration and continues

indefinitely.
The extent of a local or formal variable starts on entry#to the body of the

function in which it is declared or initialised and continues until exit from the
body. During this extent the extent of any other variable with the same
unique name is temporarily interrupted. This is called a Hole in the Extent
of the other variable. Its value is not altered but it cannot be accessed or
changed by assignment. Thus there is only one variable Currently Associated
with a particular unique name during any evaluation. Other variables
associated with the unique name are in abeyance.
• More than one global declaration of the same identifier is not permitted
unless a cancellation of it intervenes in the text.

Similarly a declaration of a local variable is not permitted if there is already
a declaration of a local or initialisation of a formal with the same identifier
for the same function body.
A Standard Variable is a global variable which already has a value on entry

to the pop-2 system. A Standard Function (or Routine) is one which is the
value of a standard variable. Certain standard variables are Protected, i.e.
no assignment may be made to them.

218

BURSTALL AND POPPLESTONE

3.3. Cancellation
A cancellation terminates the scope of any declaration of an identifier and
removes the effect of any restrictions placed upon the identifier. The
cancellation must occur textually between the old declaration and any new
declaration. It may not occur in a function body.
The syntax of cancellations is:

<cancellation>::= cancel <identifier *>

4. FUNCTIONS

4.1. Definition of functions
A Function is a compound item. Definition and application of functions are
treated in this section and the next. Certain properties of a function regarded
as a data structure are treated in section 8.7 'Functions'.
A function consists of a Formal Parameter List which is a list of identifiers

of formal variables, possibly an output local list which is a list of the identifiers
of output local variables (see section 4.2 'Application of functions') and a
Body which is an imperative sequence (see section 5.3 'Statements and
imperatives').
A function which produces no results (see section 4.2 'Application of

functions') is called a Routine.
Functions may be referred to in the program by using a function constant,

called a Lambda Expression, or they may be standard functions provided by
the pop-2 system, or they may be created by partial application or by appli-
cation of a standard function which produces a function as a result.
The syntactic representation of a function constant is:

(formal parameter list element>::=<ident> I <restriction>
'(formal parameter list>::=<formal parameter list element *?>
<output local list element>::=<ident> I <restriction>
<output local list>::= <output local list element *?>
<function body>::=<imperative sequence>
<lambda expression> ::=1ambda<formal parameter list><output local list> ;

<function body> end

Example:

<lambda expression>e.g.::= lambda x y; cons(x, cons(a, y)) end
I lambda x; n1(1); print(x) end

We very often wish to declare a variable and then assign a function to it.
The syntactic form of this will be as follows:

vars <identifier>;
<lambdaXformal parameter list>; <function body> end —■ <identifier>

219

PROBLEM-ORIENTED LANGUAGES

This is so common that a special syntactic form is introduced which is
equivalent to it:

<function>::= function I routine
(Junction definition>::=<functionXidentifierXformal parameter list>;

<function body> end

The word routine is a synonym for function. It may be used for a function
with no results.

If the identifier has been previously declared at this level no new declaration
is implied and the function definition is equivalent simply to an assignment
of a lambda expression. The identifier may be an operation identifier.
Example:

(function definition>e.g.::= function max x y; if x > y then x else y close
end
I routine enter u v; cons(conspair(u, v), dict)—•

dict end
I function order x y u v;

if x > y then x --• u; y --■ v
else y u; x —■ v close

end

4.2. Application of functions

An n-Tuple is an ordered sequence of n items (n >0). An item is identical
with the 1-tuple whose sole member is that item. An n-tuple and an m-tuple
may be Concatenated to produce an (n+m)-tuple.
A function of n arguments (i.e. with n formal parameters, excluding frozen

formals; see section 4.4 'Partial application'), may be Applied to an n-tuple,
whose members are called the Actual Parameters of the function. Application
of a function to its actual parameters produces an m-tuple, whose members
are said to be the Results of the function. A function producing no results
(i.e. an 0-tuple) is called a routine (see section 4.1 'Definition of functions').
A function which does not take a fixed number of arguments is called

Variadic. A function which does not produce a fixed number of results is
called Variresult.
The application of a function to its actual parameters consists of the follow-

ing sequence of events:

Entry: a new variable corresponding to each formal parameter is initialised
to the corresponding actual parameter value, or if it is a frozen formal to the
corresponding value in the frozen value list. A new variable corresponding to
each local variable declaration in the function body but not in any interior
function body is then created. The variables previously associated with the
identifiers of formal or local variables can no-longer be referred to but their
values are undisturbed.

Running: the function body is evaluated with the variables created on entry.
220

BURSTALL AND POPPLESTONE

Exit. Any items which have been placed on the stack (see section 5.3 'State-
ments and imperatives') and were not there at entry are concatenated with
the values of any Output Local Variables to form the results of the function.
The variables created on entry are terminated and the variable associated
with each identifier reverts to what it was on entry. There is no change in the
values of variables which were previously associated with the formal or local
variable identifiers and have now been reinstated. The values of formal and
frozen variables are lost. The frozen formals will be reinitialised from the
frozen value list on the next entry to the function normally with the same
values as last time; the frozen value list can be changed by using frozval (see
section 8.7 'Functions').

4.3. Nonlocal variables

Variables which occur in a function body and are not locals (i.e. declared in the
body) or formals (i.e. elements of the formal parameter list) are called Nonlocal
to the function. They may be globals or locals of some outer function body
which textually encloses it. Care must be taken not to apply a function with
nonlocals in a hole in the extent of some of its nonlocals (see section 3.2
'Declaration and initialisation') or outside their extent. Mention of the
identifier of such a nonlocal would refer to a quite different variable currently
associated with that unique name. The difficulty can arise for recursive
functions. Analogous trouble may arise if nonunique is used.
To avoid such difficulties a frozen formal may be used instead of the non-

local, provided that it is not desired to assign a new value to the nonlocal as
a result of the call. The frozen formal can be initialised by partial application
to the value that the non-local would have taken. (Note that the frozen
formals can be used in this way to give the equivalent of CPL fixed functions,
see CPL Reference Manual privately circulated by C. Strachey, Programming
Research Unit, Oxford University.) In cases where assignment to the non-
local is desired a frozen formal can be used and initialised to take a reference
(see section 8.1 'References') as value. The component of this reference can
then be assigned to, and so long as the reference is made the value of some
other exterior variable the value is accessible outside the function body.

4.4. Partial application

In section 4.2 'Application of functions' we explained the method of applying
a function to its arguments. There is a process somewhat analogous to
application called Partial Application. By this means some of the formal
parameters of a function may be made into Frozen Formals, producing a new
function with fewer arguments. The frozen formals are always initialised to
a fixed value when the function is applied and do not require any correspond-
ing actual parameters (see however section 8.7 'Functions' for means of
altering this fixed value). In other words the actual parameters corresponding

221

PROBLEM-ORIENTED LANGUAGES

to the frozen formals are supplied once and for all on partial application.
The values of the frozen formals are called the Frozen Value List.
For example by partially applying the two argument function 'multiply'

to 2 we get a one argument function to double a number, and by partially
applying it to 3 we get a function to#triple a number. These two functions
can coexist, and in general one function can be used to generate any number
of others by partial application.
More formally we say that a function f of m arguments may be partially

applied to an n-tuple of actual parameters with n m. We assume for the
moment that f has no frozen formals. The partial application produces a
new function f' with m-n ordinary formals corresponding to the first m-n
formals of f, and n frozen formals corresponding to the last n formals of f.
The function f ' has a frozen value list consisting of the n items supplied as
actual parameters of the partial application.
Iff itself has some frozen formals already, say k of them, then f ' will have

n + k frozen formals and n + k corresponding items in its frozen value list.
The standard function partapply takes a function as its first argument and

a list as its#second argument, and partially applies the function to the elements
of the list.

partapply e function, list function

Note that partial application constructs a new function with a particular
frozen value list, it does not alter the original function in any way. A function
which has been produced as the result of partial application is called a Closure
Function. The frozen values of a closure function can be selected or updated
(see section 8.7 ̀ Functions').

If a doublet (see section 4.5 'Doublets') is partially applied to one or more
items it produces a new doublet. The selector of the new doublet is obtained
by partially applying the selector of the original doublet to the given items.
The update routine of the new doublet is obtained by partially applying the
update routine of the original doublet to the given items.
A special syntactic form is also available for partial application. It is

similar to#that for ordinary application (see section 5.1 'Expressions').

<partial application bracket> =(%I%)
(partial application>::=<non-operation identifier> (%<expression list> %)

I <lambda expression> (% <expression list> %)

The value of the variable currently associated with the identifier is partially
applied to the concatenation of the expressions in the expression list. Thus
for example:

vars c; cons(%[is a number] %)—c;
c(1)
** [us a number]
c(2)
** [2 is a number]

222

BURSTALL AND POPPLESTONE

function f x y z; .. etc. end;
f (% yl, zl %)—*fl; f 1(xl)

4.5. Doublets

When dealing with data structures, functions called selectors are defined which
may be applied to a structure to produce its components (see section 7.1
'Functions of data structures'). To each selector there corresponds#an update
routine which alters the value of the component in the structure to a given
new value.
Any function may have an update routine associated#with it. This#will

normally only be done for selector functions. The function is then called a
Doublet. When a function is created using a lambda expression its associated
update routine is not defined. An update routine may be associated with it
by using the doublet updater, (see section 8.7 'Functions').
When a variable whose value is a doublet is used as the operator of a

compound expression the selector function of the doublet is applied. But
when such a variable is used as the operator of a quasi compound expression
(i.e. as part of a destination of an assignment) the update routine is applied.

It is convenient to extend our notation for functions (see section 1.5
'Notation for functions') using the new symbol ̀.= to express concisely
the domain and range of the selector and update routines of a doublet.
Thus iff is a doublet we write

fe dl, , dk= r

meaning that f has a selector s

s e dl , dk r

and an update routine u

u e r, dl, ,dk ()

Example:

The standard function hd used in list processing (see section 8.3 'Lists') is
a doublet.

vars 1; [1 2 3 41-4; hd(I)
** 1
5—+hd(1); 1
** [5 2 3 4]
hd(1)
** 5
function second I; hd(t1(1)) end;
lambda x I; x—+hd(t1(1)) end-4updater(second);
second(1)
** 2
6—■ second(1); 1
** [5 6 3 4]

223

PROBLEM-ORIENTED LANGUAGES

4.6. Arithmetic operations

In sections 2.2 'Integers' and 2.3 'Reals' a number of standard functions were
introduced for performing arithmetic on integers and reals.
We say that an item is a Number if it is either a real or an integer. Arith-

metic on numbers is performed by the following standard operations:

Operation Precedence Explanation Result
< 7 less than truthvalue
> 7 greater than truthvalue
= < 7 less than or equal truthvalue
> = 7 greater than or equal truthvalue
+ 5 add real or integer
— 5 subtract real or integer
* 4 multiply real or integer
/ 4 divide real

1 3 exponent real

These are defined in terms of intadd, realadd, etc. and isreal, isint and
realof. +, — and * produce an integer result if both arguments are integer
otherwise a real result.

5. EXPRESSIONS AND STATEMENTS

5.1. Expressions

An Expression is either a simple expression, a compound expression, a
conditional expression or an imperative expression (see section 5.3 'State-
ments and imperatives').
A Simple expression is either an identifier or a Constant, a constant being

an integer, a real or a structure constant. If the simple expression is an identi-

fier then its value is the value of the variable currently associated with that
identifier. If it is a constant then its value is the item denoted by the constant.
A Structure Constant is either a lambda expression which is dealt with in

section 4.1 'Definition of functions' and in section 8.7 'Functions', a word

constant, a string constant or a list constant, all of which are dealt with in

section 8 'Standard structures'.
• A Compound expression has an' Operator which is an expression and some

Operands which are an expression list. The value of a compound expression

is found by evaluating the operands and evaluating the operator, whose value

should be a function (see section 4.5 'Doublets' for the case where the opera-

tor is a doublet). The sequence in which these evaluations are carried out is

not defined. The function obtained from the operator is then applied to the

n-tuple obtained by evaluating the operands. The case where the number of

arguments required by the function is not equal to the number of items

obtained by evaluating the operands is dealt with in section 5.3 'Statements
224

BURSTALL AND POPPLESTONE

and imperatives'. The results of this application are the value of the expres-
sion. Thus the value of the expression is an n-tuple, with n=0 if the function
is a routine.

Evaluation of conditional expressions is described in section 6.1 'Condi-
tional expressions', and that of imperative expressions in section 5.3 'State-
ments and imperatives'.
An expression list is evaluated by evaluating the expressions of which it

consists and concatenating the results. The order in which the evaluations
are made is not defined. The order in which the results of evaluating the
expressions are concatenated is the order in which the expressions occur.
The syntax of expressions is given below. There are a number of syntactic

forms for compound expressions. A further explanation of the syntax is
given in section 5.2 'Precedence'.

<non-operation identifier>::=<identifier> I nonop <operation>
<constant>::=<integer> I <real> I <structure constant)
<structure constant>::=<lambda expression> I <quoted word> I <string

constant> I'<list constant)
<simple expression>::=<non-operation identifier> I <constant>
<operation>::=<identifier>
<parentheses)::=(I)
(compound expression>::= <non-operation identifier> (<eXpression list>)

Kexpression ?Xoperation><expression ?>
'<closed expression?Xdot operator*)
I <structure expression>

<closed expression>::=<simple expression> I <list expression>
I <conditional expression>

<dot operator>::= . <non-operation identifier>
<structure expression>::=<partial application) '<list expression>
<expression list>::=<expression?> , <expression list> I <expression ?>
<expression)::= <simple expression> I <compound expression>

I <conditional expression> I <imperative expression>
(<expression list>)

Examples:

<simple expression>e.g.::=x I nonop+ I 3 I lambda x; x+ 1 end I [3 5 9]
<operation>e.g.::= + I *** I adjoin
<compound expression>e.g.::=f (x + 1, y) I a*(b+ c) I x.hd

If (%x %)1E/ x+ 1, x+2 %i
<expression>e.g.::= a I g(h(x +1)) I if x=0 then y else z close

(x+1—•x; y+ 1 —■y; x*y)
(x, y+ 1, z-1)

The various syntactic forms of compound expressions denote the operator
and operands in the following way:

(i) <non-operation identifier) (<expression list)). Here the operator is the
identifier and the operands are the expression list.

225

PROBLEM-ORIENTED LANGUAGES

(ii) <expression 7> <operation> • <expression ?>. This is equivalent to:

nonop <operation> (<expression ?>, <expression ?>) which is a special case

of (i) above.
(iii) <closed expression ?>. <non-operation identifier>. This is equivalent

to:
<non-operation identifier> (<closed expression ?>) which is a special case of
(i) above.

(iv) <structure expression>. This is equivalent to (i) above with a special
identifier for the operand. The exact rules are given in section 4.4 'Partial
Application' and section 8.3 'Lists'.

Note that there is no syntactic provision above for compound expressions
whose operator is an expression other than an identifier.

5.2. Precedence

If a compound expression or quasi compound expression is of the form

<expression ?> <operation> <expression ?>

the operator is the operation. In this case ambiguity might arise in the analy-
sis of expressions such as

<expression> <operation> <expression> <operation> <expression>

which could be analysed with association to the left or to the right. This
ambiguity is resolved by the notion of precedence. A precedence is a positive
integer between 1 and 7 associated with an operation identifier. It is set by a
declaration and can only be changed by cancellation. The operator of a
sequence of expressions containing one or more operations is the operation
of highest precedence or if there is more than one operation of highest
precedence the rightmost of these.

It must be made clear that the difference between an operation and any
other identifier which is restricted to having function values is purely a
syntactic one.

It may be desired to use an operation in a context other than as the operator
of a compound expression. If so it must be prefixed with the word nonop
in which case it is treated syntactically like any other identifier. The use of
nonop overrules the precedence of the identifier but does not remove
restriction of its values to functions. This facility enables operations to
appear as operands and enables assignment to operations.

Example:

> has precedence 7, + and — have precedence 5 and * has precedence 4.

5 — x+ 2*y> 1+ 2 is the same as ((5 —x)+(2*y))> (1+ 2).

5.3. Statements and imperatives

A statement is either an assignment, a goto statement, a machine code
instruction or an expression list. It may be labelled.

226

BURSTALL AND POPPLESTONE

An imperative is either a declaration or a statement.
The syntax is:

<statement>::=<assignment> I <goto statement>
I <code instruction> I <expression list>
I <labelled statement>

<imperative>::=<declaration> I <statement>
<imperative sequence>::=<imperative>; <imperative sequence> I

<imperative ?>

Example:

<imperative sequence>e.g.::=loop:x-1—■x; f (x)—oy; if x>O then goto
loop;
I x+1—q; y; u—oy;—+z;

The evaluation of an Imperative Sequence consists of evaluating the state-
ments in the sequence in which they occur, except when a goto statement
oceurs and the sequence continues at the point indicated by the goto state-
ment.
An Imperative Expression may be formed from an imperative sequence.
The syntax is:

(imperative expression>::=(<imperative sequence>)

The Stack is an ordered sequence of items. The last item to be added to
this sequence is said to be on Top of the Stack. Items can be added to the
top of the stack or removed from the top of the stack. On entry to the
Pop-2 system the stack is empty. When a statement is evaluated any results
produced are added to the top of the stack. The results of an imperative
sequence are the items left on the stack when the sequence has been evaluated.

Evaluation of a statement which is a compound expression may affect the
stack as follows. If the number of arguments required by the function
obtained by evaluating the operator is not the same as the number of items
produced by evaluating the operands, these items are loaded on to the stack
in sequence. The function then takes its arguments off the stack, the last
argument being the one which was on the top of the stack. Thus suppose that
the function requires m arguments and the operands yield n items. If m>n the
first m—n arguments are taken off the stack. If m<n the first n—m items
produced by the operands are left on the stack. If m=n the stack is not
affected by evaluating the compound expression. Exactly analogous remarks
apply to quasi compound expressions.

5.4. Labels and goto statements
A Label may be attached to a statement. Evaluation of a Goto Statement
using that label causes the sequence of evaluation to be changed so that the
labelled statement is evaluated next. A goto statement may not refer to a
label outside the function body in which it occurs. If a goto statement occurs

227

PROBLEM-ORIENTED LANGUAGES

in an operand of a compound or quasi compound expression it may not refer

to a label outside that operand. The syntax is:

<labelled statement>::=<label>: <statement ?>
<goto statement>::=goto <label> I return
<label>::=<identifier>

The statement return causes transfer of control to the exit of the innermost

current function body. There is a standard macro exit which is synonymous

with return close.
If an identifier or sign is used for a label it may not appear as an identifier

associated with a variable in the text constituting that function body.

Goto statements and labelled statements may only occur inside a function

body.
Note that a label is not an item.

Example:

loop: x+1-4x; y*y-+y;
if x=0 then goto loop close.

5.5. Assignment
An Assignment consists of a Source, which is an expression or sequence of

expressions and a Destination List, which is a sequence of elements each of

which is either an identifier or a Quasi Compound Expression.
A quasi compound expression has an operator which is an expression and

some operands, i.e. a sequence of expressions (possibly an empty sequence).

Note that a quasi compound expression is not an expression and cannot be

evaluated alone to produce an item; it is merely a component of an assign-

ment. It is syntactically the same as a compound expression but cannot be

evaluated in isolation.
An assignment is evaluated as follows. First the source is evaluated to

yield an n-tuple (where n k, k being the number 'of destination elements).

The last k elements of this n-tuple, which we will call the Source Items, are

then taken in sequence starting from the last and each source item is com-

bined with the corresponding destination element (taken in sequence starting

from the first) as follows:

(I) If the destination element is a variable the source item becomes the new
value of that variable.
' (ii) If the destination element is a quasi compound expression the operator

and operands of this expression are evaluated. The value of the operator

must be a doublet (see section 4.5 'Doublets') and its update routine is
applied to the concatenation of the source item and the values of the

operands.
The syntax of quasi compound expression is given below. A further

explanation of this syntax is given in section 5.2 'Precedence'.

<quasi compound expression>::=<noh-operation identifier> (<expression

list>)
228

BURSTALL AND POPPLESTONE

I <expression ?> <operation> <expres-
sion ?>
I <closed expression ?>
<dot operator * ?>

The syntax of assignments is:

<assignment>::=<expression list> <destination *> I <function definition>
I <macro definition>

<destination>::= -■ <non-operation identifier> I -+ <quasi compound
expression>

Example:

<assignment>e.g.::=x+ 1 --• y I u+v-9a(i,j)(x//y-'u-.v

In the second example a(i, j) is a quasi compound expression and the whole
assignment is a euphemism for al(u+v, j) where al is the update routine
of the doublet a.

Function definitions and macro definitions are special syntactic forms for
assignments.

5.6. Comments

The word comment and all characters after it up to and including the next
semicolon are ignored.

6. CONDITIONALS

6.1. Conditional expressions

A conditional expression is composed of three components which we will
call the Condition, the Consequent and the Alternative. The condition is an
expression with a single result, a conjunction or a disjunction (see section
6.2 'Conjunctions and disjunctions'). The consequent and the alternative
are imperative sequences each having the same number of results. The
method of evaluation of a conditional expression is as follows:
The condition is first evaluated. If its value is the truth value true then

the consequent is evaluated and its value becomes the value of the expression.
But if the value of the condition is the truth value false then the alternative
is evaluated and its value becomes the value of the expression.
The alternative of a conditional expression may be omitted if it is an empty

imperative sequence.
It will often happen that the alternative is itself a conditional expression.

The syntax of conditionals is arranged to provide a compact notation to
express this:

<conditional body>::=<imperative sequence>
<conditional expression>::= if <condition> then <conditional body>

<elseif clause *7> <else clause ?> close
229

PROBLEM-ORIENTED LANGUAGES

<elseif clause>::=elseif <condition> then <conditional body>
<else clause>::= else <conditional body)

Example:

<conditional expression>e.g.::= if x> 0 and x< 3 then y elseif x>3 then z
else 0 close
I if x=0 then l-+), close

If there are no elseif clauses the conditional body is the consequent and

the else clause is the alternative (which may be omitted). If there are elseif

clauses then the first expression is the condition, the second is the consequent

and the remainder is the alternative, and it is to be regarded as the conditional

expression obtained by replacing the first elseif by if and inserting an extra

close before the close, e.g.

if p then x elseif q then y else z close

is equivalent to

if p then x elseif q then y else z close close.

6.2. Conjunctions and disjunctions

A Conjunction is composed of two component expressions each producing

a single result. The method of evaluating a conjunction is to evaluate the

first component expression and if its value has the truth value false the

value of the conjunction has truth value false, otherwise the second expres-
sion is evaluated and the conjunction has a truth volue equal to that of the

second component expression.
A Disjunction is composed of two component expressions each producing

a single result. The method of evaluating a disjunction is to evaluate the

first component expression and if its value has the truth value true the value

of the disjunction has truth value true, otherwise the second expression is

evaluated and the disjunction has a truth value equal to that of the second

component expression.
A number of conjunctions and disjunctions can be combined to form a

condition.
The syntax is:

<condition>::=<expression> and <condition> I <expression> or <condition>
I <expression>

These three kinds of conditions are respectively a conjunction, a disjunction

and an expression.
Thus and and or associate to the right.

<condition>e.g. ::= x< 10 and x>0 x> 10 or x<0 I null(x) I b
p(x) and q(x) or r(x)

In the last example the following cases can occur (` —' means that the expres-

sion is not evaluated)
230

BURSTALL AND POPPLESTONE

p(x) q(x) r(x) value of condition

false — — false
true false false false
true false true true
true true — true

7. DATA STRUCTURES

7.1. Functions of data structures

A Data Structure is a compound item which has other items as its Components.
For each class of data structures there is a family of functions called the
Characteristic Functions acting upon structures of that class. These functions
are a constructor, a destructor, selectors and update routines. A given
compound item may represent a number of different data structures by being
used in association with more than one family of functions and hence having
different components.
Given values for its components it is possible to construct a data structure

using a Constructor function, say c.

c e component, ... , component#20data structure

It is possible to select the value of a component of a data structure. For
each component there is a Selector function, say si.

si e data structure component

It is possible to update a component of a data structure, i.e. to give it a
new value. For each component there is an Update Routine, say ui:

ui e component, data structure ()

When a data structure is updated the old version is overwritten.
It is convenient to define another function called a Destructor function, say

d, which#is the inverse of the constructor, i.e. given a data structure it produces
its components as results.

d e data structure component, ... , component

After applying the#destructor to a structure, the structure is deleted.
There is a relation called equality (see section 2.1 ̀ Simple and compound

items') which may hold#between two compound items. It is denoted by the
standard function = (an operation of precedence 7). This function is also
defined for simple items with the usual meaning.

= e item, item truthvalue

Thus if the value of an expression 'EV is equal to the value of an expression
'.E2' then the expression

El = E2

has value true.
231

PROBLEM-ORIENTED LANGUAGES

Equality means that the two compound items contain the same address,

i.e. they point to the same area of store. If the items are not equal they point

to entirely different areas of store. We say that a compound item is Copied

at the Top Level if a new item is formed pointing to a new area of store which

contains items equal to those of the given compound item. The new item

and the previous one are not equal. They are however Equivalent.
Equivalent compound items are defined as items which are either equal or

all of whose components are equivalent.
Updating an item alters a component item in the store area pointed to by

the item but does not cause copying.
We will now give a more formal explanation of equality, but the model in

terms of addresses and storage may be kept in mind.
Equality is an equivalence relation, i.e. it is

(i) reflexive (x = x);
(ii) symmetric (if x =y then y= x); and
(iii) transitive (if x=y and y=z then x=z).

It has the following other properties:

(iv) The value of a formal parameter variable is equal to the corresponding

actual parameter.
(v) If an item is assigned to a variable then the value of the variable is

equal to that item.
(vi) An item, other than a word or simple item, which is read in (see section

9.1 'Input') is not equal to any other item.
(vii) The rules for equality of words are given in section 8.6 'Words'.
(viii) Two integers or two reals are equal according to the usual rules of

arithmetic. An integer is never equal to a real.
Items are equal only if their equality follows from the above properties.
We can now state some relationships between the various functions on

data structures. We will use a and b for data structures, xl, ,xi, ... , xk for

items occurring as components, sl, ,si, ,sk for selectors, ul, , ui, , uk
for update routines, c for a constructor and d for a destructor.

(i) sl(a), , sk(a) is the same n-tuple as d(a), i.e. they have equal
elements.

(ii) ,xi, , xk))= xi is true.
(in) c(s1(x),... , sk(x))=x is always false, but the left-hand expression is

'equivalent to x.
(iv) After evaluating ui(xi, a),

si(a). xi is true.
(v) After evaluating ui(si(a), a), a is unchanged.
(vi) If a = b then ui(zi, a) is evaluated,

si(b)= xi is true and a = b is still true.
(vii) From (i) and (ii) above d(c(xl, , xk)) is the same n-tuple as

xl, , xk, i.e. they have equal elements.
If a and b are data structures and a is not equal to b and updating a corn-

232

BURSTALL AND POPPLESTONE

ponent of a also updates some component of b then a and h are said to
Share.
When we wish to discuss a class of data structures which do not all have

the#same number of components (such as strips, see section 7.3 'Strips') it is
convenient to define a General Selector function and a General Update
Routine.
The general selector function, say s, has as arguments, an integer, i, and a

data structure. It selects the ith component of the data structure.

S e integer, data structure component

Thus if si is the ith selector s(i, a). si(a).
Similarly for the general update routine, say u,

U E component, integer, data structure =. ()

Thus if u/ is the ith update routine, u(xi, F, a) has the same effect as
ui(xi, a).
The programmer is able to create new kinds of data structures called records

and strips (see section 7.2 'Records' and 7.3 ̀ Strips'). He can also create
functions by methods already described. He may be able to create other
kinds of data structures using extra standard functions or machine code but
this depends on the implementation. Certain classes of records and strips
are standard and these are described in section 8 'Standard structures'.
There are a number of special expressions called 'structure expressions'

used to construct these standard structures (see section 5.1 'Expressions').
Given a class or several classes of data structures with their associated

functions it is possible to define functions which characterise a new family of
data structures. Suppose for example that we have a class of structures with
two selectors, say sl and s2, and components which are full items and members
of the same class of structures. We can then define a new class of structures
whose selectors are given by:

function sit a; sl(s1(a)) end; function s12 a; sl(s2(a)) end;
function s21 a; s2(s1(a)) end; function s22 a; s2(s2(a)) end;

If c is the constructor of the first class we define the new constructor:

function#cc xl x2 x3 x4; c(c(xl, x2), c(x3, x4)) end;

Note that if it is associated with two or more families of functions the same
compound#item#can represent two or more structures, one of each class.
However, for each class of compound items there is one Primitive Data
Structure Class and other data structures are defined in terms of this primitive
class. A primitive data structure does not share with any other primitive
data structure.

7.2. Records

A Record is a compound item which is a member of a Record Class. The
Size of a set of items is an integer item. If all the items in the set are restricted

233

PROBLEM-ORIENTED LANGUAGES

to be non-negative integers less than 2, the size is the integer /4 otherwise if

the component is a Full Item (i.e. the set is not restricted) the size is the integer

0. For each component of a record there is a size associated with the set of

possible values of that component. The Specification of a Record is the list

of sizes associated with its components. A record class is a set of records

which all have the same specification, and this is said to be the specification

of the record class. Note that a record class is not an item. A word is associ-

ated with each record class.
*A family of functions is associated with each record class to form a primi-

tive class of data structures. This family comprises a set of selectors (e record
component) and a set of corresponding update routines (e component,

record =. ()), a constructor (e component, , component record) and a

destructor (e record component, ... , component). Each selector function
may be paired with the corresponding update routine to form a doublet

(e record = component). The standard function recordfns is used to
create a new record class. It requires as arguments the word to be associated
with the record class, an estimate of the number of records in the record
class (this is purely to help in efficient implementation) and the specification
of the record class. It produces the constructor, the destructor and the
doublets for the record class. The number of its results depends on the
length of the specification list. Normally the programmer will immediately
assign these resulting functions to variables.

recordfns e word, integer, specification constructor, destructor,
doublet, ... ,doublet

There is a standard function which converts a record to a list of its com-
ponents:

datalist e record list

There is a function dataword which given a record produces the word
associated with its record class.

dataword e record word

The function copy copies a record at the top level.

copy e record record

The functions datalist, dataword and copy are defined over records of any
class, and whenever recordfns is used to create a new record class these three
functions are extended to deal with records of that class.
The routine enddata may be given the word associated with a record class

and removes all records in that class. It also adjusts the three functions just
mentioned so that they no longer deal with that record class.

enddata e word

7.3. Strips
A Strip is a compound item which is a member of a Strip Class. All
components of a strip must have the same size (see section 7.2 'Records'

234

BURSTALL AND POPPLESTONE

for definition of size) which is called the Component Size of the strip. Al
strips in a strip class must have the same component size but not necessarily
the same number of components. A word is associated with each strip
class.
A family of functions is associated with each strip class to form a primitive

class of data structures. This family includes a general selector function
(e integer, strip component) and a general update routine (e component,
integer, strip 0). The selector function may be paired with the update
routine to form a doublet. It also includes for each strip class an initiator
function (e integer strip). This constructs a strip with the given number
of components, but the values of these components are not defined. The
initiator may be used with the update function to define a constructor function
for strips of the strip class.
The standard function stripfns is used to create a new strip class. It takes as

arguments the word to be associated with the strip class, an estimate of the
total number of all components of all strips in the strip class (this is purely to
help in efficient implementation) and the component size of the strip class.
It produces as results the initiator function and the doublet for the strip
class:

stripfns e word, integer, size initiator, doublet

There is a standard function which converts a strip to a list of its com-
ponents. This is datalist (see section 7.2 'Records'). There is a function
which given a strip produces the word associated with its strip class. This
is dataword (see section 7.2 'Records').
The function copy copies a strip at the top level (see section 7.2

'Records').
The functions datalist, dataword and copy and the routine enddata act for

strips just as for records.

7.4. Garbage collection

Storage for the construction of data structures is made available by a storage
control system. This system must be able to make use of areas of store which
have been used but are no longer required. This is achieved by a process
known as Garbage Collection which is undertaken whenever the system runs
short of store. This first of all discovers what items can still be referred to
by the programmer, e.g. because they are the value of a variable whose
extent has not finished (see section 3.2 'Declaration and initialisation'). Any
items which can no longer be referred to are destroyed, i.e. their storage area
is returned to the system for use in constructing other items. Since he cannot
refer to them the programmer is not aware of this destruction.

If variables refer to compound items which are no longer in use, the garbage
collector cannot recover the associated storage. The variable should be
reset, e.g. to zero. In the case of identifiers the identifier can be cancelled
(see section 3.3 'Cancellation').

235

PROBLEM-ORIENTED LANGUAGES

To avoid too frequent garbage collection compound items can be deleted,

i.e. returned to the storage control system, using the standard routine:

delitetn e item ()

When an item is deleted its components are not deleted.
After an item has been deleted it is no longer available and the onus is on

the programmer not to use it. The implementation may not give an error

message if he does use it, the value simply not being defined.

8. STANDARD STRUCTURES

8.1. References

There is a standard record class called References. These have one com-
ponent which is a full item. The word associated with the class is ref"."
Thus before entry to the pop-2 system this class is created using recordfns,
and the resulting functions are assigned to variables to give the following
standard functions:

constructor: consref E item => reference
destructor: destref e reference item
doublet: cont e reference = item

A reference may be used e.g. as an actual parameter of a function to
enable the function to cause side effects by updating the reference.

8.2. Pairs

There is a standard record class called Pairs. Records of this class have two
components which are both full items. The word associated with the class
is "pair". Thus before entry to the pop-2 system this class is created using
recordfns, and the resulting functions are assigned to variables to give the
following standard functions:

constructor: conspair e item, item pair
destructor: destpair e pair item, item
doublets:front, back all e pair = item

An Atom is an item which is not a pair. Atoms are recognised by the
standard function atom.

atom E item truth value

8.3. Lists

There is a standard data structure called a Link which is used to construct
another data structure called a List. Lists in pop-2 include structures
analogous to use lists, but also structures which compute the elements
dynamically (cf. P. J. Landin's ̀ streams').
The word "nil" is used to represent the Null List and the standard variable

236

BURSTALL AND POPPLESTONE

nil takes this value on entry to the pop-2 system. The null list is also repre-
sented by a pair whose front is true and whose back is a function.

The standard#function null recognises the null list

null e list truthvalue

A list is either the null list or it is a link.
A link is either:

(1) a pair whose front component is any item and whose back component
is a list, or

(ii) a pair whose front component is false and whose back component is a
function with no arguments and one result.

In case (ii) the function is one which when repeatedly applied produces
a succession of items, not necessarily all the same, i.e. normally the function
will side-effect itself. The last item produced should be the terminator. For
example this enables us to convert an input file to a list. Lists with this sort
of link are dynamic and some or all of their elements are computed rather
than stored statically.
The characteristic functions of a link are:

constructor: cons e item, list link
destructor: dest e list item, list
doublets: hd E link = item (called the 'head')

i/ e link ==. item (called the 'tail')

These functions are very similar to those for pairs, but in the case of a link
of the second kind special precautions are taken to make sure that on applying
the selector tl the front component#is not lost but preserved in a pair. Thus
if x has a list as its value and t/(x) is evaluated there is a side effect on x,
but matters are so arranged that this side effect is not detectable using the list
processing functions. The function#cons is the same as conspair and produces
a link of the first kind. The following standard function produces a link of
the second kind or the null list given a function of no arguments:

fntolist e item) list
function fntolist f; cons(false,!) end

The other characteristic functions are defined as follows:
First an auxiliary function (not standard) to convert the first link#of a

dynamic list to static form.

function solidified 1; vars f x;
If isfunc(back(1))

then back(1)—tf; f —• x;
if x= termin then true—'front(1)

else x—'front (I); conspair(false, f)—tback(I)
close; 1

else 1
close

end;
237

PROBLEM-ORIENTED LANGUAGES

function hd 1; front(solidified(I)) end;
lambda ii; 1--•front(solidtfied(1)) end --,updater(hd);

function d I; back(solidified(1)) end;
lambda ii; i—•back(solidified(1))end—oupdater(t1);
function dest I; varsf;

if isfunc(back(I)) then back(I)—*f; (f 0,1)
else (front(1),back(0)

close
end;
function null 1;

if 1= nil then true
elseif isfunc(back(1))

then if hd(I) or null(solidified(1)) then true else false close
else false

close
end;

A list may have no components (if it is the null list) or one or more (if it

is a link).
If it is a link its first component is the head component of the link and its

remaining components are the components of the list which is the tail

component of the link. Thus the characteristic functions for lists can be

defined in terms of those for links.
There are two special syntactic forms for constructing lists. These are

list constants and list expressions. List constants may have lists, integers,
reals, words or strings (see section 8.4 'Full strips and character strips') as
components. The list is constructed at compile time.

<list constant brackets>::=[I]
<list constant>::=Wist constant element *?>]
<list constant element)::=<list constant> '<character group>

Example:

<list constant>e.g.::= [1 2 DOG CAT] I [[1 2] [4 5] 6]

List expressions are formed by evaluating a number of expressions at run
time and constructing a list.

<list expression brackets>::=[% I %]
<list expression>::=[%<expression list> /0]

Thus
[% Y.] is equivalent to nil
and [% <expression> Y.] is equivalent to cons(<expression>, nil)
and [% <expression>, <expression list> %] is equivalent to
cons(<expression),[%<expression list> %])

Example:
<list expression>e.g.::=[%x+1,[%x+2, x+ 3 %], 11(y)%]

238

BURSTALL AND POPPLESTONE

For convenience the following functions are standard:

next e listitem, list (similar to dest but non-destructive)
: :(a synonym for cons but an operation of precedence 2)
Øe list, list list (concatenates the lists, an operation of precedence 2).

8.4. Full strips and character strips
Two strip classes are standard.
The first is Full Strips with full items as components and associated word

"strip". The characteristic functions are:

initiator: Mit e integer --* full strip
doublet: subscr e integer, strip = item

The second is Character Strips (also called 'Strings') (for characters see
section 8.6 ̀ Words') with component size 6 and associated word "cstrip". The
characteristic functions are:

initiator: Mite e integer character strip
doublet: subscrc e integer, strip = integer of size 6

The components of a character strip may be any integers of size not more
than 6, they need not necessarily be used to represent characters.
There is a structure constant to construct character strip constants at

compile time.

<string bracket>::= \
<string constant>::= '<string constant element * ?>\
<string constant element> ::=<string constant> I <any character except

a string bracket>
Example:

<string constant>e.g.::= i... rubbish . please type 'sorry"\

Spaces and newlines are significant in string constants.
There are functions to input and output character strings stored as charac-

ter strips (see section 9.1 'Input and output'). The external format is as for
string constants.

8.5. Arrays
Arrays give a convenient method of accessing and updating structures indexed
by integers. An array has components, which are items of a given size. Each
component is associated with a sequence of integers called Subscripts. The
number of subscripts is known as the number of Dimensions of the array.
An array is a doublet:

array e subscript, ... ,subscript = component

This is in contrast to strips which have a general selector and a general
update routine associated with a whole class of strips and take the actual
strip referred to as a parameter. Arrays can be formed from strips (or from
other data structures) by using partial application. The programmer is free

239

PROBLEM-ORIENTED LANGUAGES

to do this in any way he chooses but standard functions for creating arrays
are provided.
There is a standard function to create a many dimensional array of items

of any size. Updating a component of this array does not affect any other
component. This function is:

newanyarray e boundslist, (subscript, .. , subscript component),
strip initiator, strip doublet array

The array produced will normally be immediately assigned to a variable.
The boundslist is a list of integers, these two integers being alternately the

lower and upper bounds for each subscript. The second parameter is a
function used to initialise the components of the array. It must produce the
appropriate component for each combination of subscripts. The strip doublet
and strip initiator are the characteristic functions of a strip class whose
components are of the same size as that required for the array components.

There is also a standard function to create arrays of full items:

newarray e boundslist, (subscript, ,subscript component) array

This is obtained by partial application and is equivalent to

newanyarray mit, subscr %).

8.6. Words
There is a standard record class called Words. It has 8 components of size 6
called Characters, and a component called the Meaning. The word associated
with the record class is "word". The standard functions characterising words
are:

constructor: consword e character, ... , character, integer word
destructor: destword e word character, ...,character, integer, item
doublets: charword e word = character, ... , character, integer

meaning e word = item

Each character of the pop-2 character set corresponds to a unique integer.
The correspondence rule depends on the implementation. Note that the
functions above are variadic and work on a variable number of characters
followed by that number as an integer. If there are less than 8 characters
supplied to the constructor the remaining character components are not
defined and they are not produced by the destructor or selector. The
constructor does not take a meaning component as argument. The meaning
of a word is undefined unless the word has been updated to have a particular
meaning.
Words may occur in the program as quoted words, i.e. word constants,

with the following syntax:

<unquoted word>::= <letter> <alphanumeric *?> I <sign *>
I <decorated bracket> I <bracket decorator>
I <separator> I <period> I <exponent> I <quote>

240

BURSTALL AND POPPLESTONE

<decorated bracket> = (I) I (% I %)
1[f% I Vol

<quoted word>::="<unquoted word>"

Example:

<quoted word>e.g.::="big" ++" i"%)" I n"
Words may also occur as components of constant lists (see section 8.3

'Lists'). Only the first 8 characters are significant.
Words may also be read as data (see section 9.1 'Input'). Words which

occur as constants or are read as data are Standardised, i.e. if a word with the
same characters already exists no new word is constructed and the compound
item produced is the previously existing word, but if no such word exists a
new word is constructed with undef as its meaning. Words constructed using
consword are also standardised, but the update routines do not standardise.

8.7. Functions

Functions are compound items. There is no constructor or destructor for
functions. They can be constructed by the methods described in section 4.1
'Definition of functions', and they can be deleted by the routine delitem
(see section 7.4 'Garbage collection'). There is a family of characteristic
functions associated with the class of functions to form a primitive class of
data structures.

Functions have an accessible component which may be used to associate
extra information with the function. It is accessed by the standard doublet

fnprops Efunction = item

Functions have an update routine (see section 4.5 ̀ Doublets'). For a
function constructed by using lambda or function or routine this has initially
no defined value. This component may be selected or updated by using a
standard doublet:

updater e function= =rroutine

Closure functions i.e. those constructed by partial application, have a
doublet to select or update the values of their frozen formals

frozval e integer, closure function = item

The integer determines which of the frozen formal values is affected,
counting from the front (if a closure function is obtained by successive partial
applications only the formals frozen by the last one are counted). There is
also a doublet to select the function from which the closure function was
constructed or replace it with another function.

fnpart e closure function=function

The standard function = follows the usual rules for compound items when
applied to functions, i.e. equality is preserved over assignment, updating
and actual parameter/formal parameter correspondence but each construction
of a function produces a different one.

241

PROBLEM-ORIENTED LANGUAGES

The following standard function recognises functions:

isfunc e item truthvalue

9. INPUT AND OUTPUT

9.1. Input

Information which is input to the pop-2 system is organised into Files, each

of which comes from a Device.
Before a file can be accessed it must be Opened. From then on it can be

read one character at a time. Eventually it must be Closed.
The naming of files and devices depends on the operating system of the

implementation. The names of files are lists and the names of devices may

be any item. A device name may refer to more than one device.
There is a standard variresult function popmess used for communicating

with the operating system

popmess e . ., item

This is used for various input and output purposes.
To open a file from a given device, popmess is used to produce a function to

read characters from it i.e. a function e Ocharacter. The list supplied to
popmess has a head which is an input device name and a tail which is a file

name.
To close a file before reaching the end of it, popmess is again used. The

list supplied to it has a head which is the word 'close" and a tail which is a
list of one element: a character reading function obtained when the file was

opened. No result is produced by popmess in this case.

The sequence of characters making up a pop-2 text may be split up into
Character Groups each of which represents a Text Item. A text item is either
an integer, a real, a word or a string. It is represented by a character group,

thus:

<character group> ::=<integer> I <real> I <unquoted word>
I <string constant>

Character groups are terminated by spaces or newlines where necessary to

separate them from the following character group.
' There is a standard function to convert a function which produces a

character whenever it is applied into a corresponding one which produces a

text item whenever it is applied.

incharitem e (0 =. character) ((1) text item)

The program is input on a standard file called the Standard Input File from a
standard device called the Standard Input Device. There is a standard func-

tion to read characterx from the standard input file:

charin e 0 character
242

BURSTALL AND POPPLESTONE

The program is compiled from the text item list which is the value of the
standard variable proglist. Initially this has as value the list of text items
from the standard input file. It may be assigned to by the programmer who
wishes to compile from a different source.
For convenience there is a standard function itemread producing the next

item of the list which is the value of proglist.

itemread e 0 text item

It is defined thus:—

function itemread; proglist . dest proglist end;

9.2. Output
Information which is output from the pop-2 system is organised into files,
each of which is sent to a device (see section 9.1 'Input').
To open an output device the standard function popmess (see Section 9.1

'Input') is used to produce a routine to deliver characters to it i.e. a routine
E character 0. The list supplied to popmess has a head which is an output
device name and a tail which is a file name.
There is a standard function to convert a routine which delivers a sequence

of characters to an output file into one which delivers a sequence of text
items.

outcharitem e (character ()) (text item 0)

Compiler messages and results of computation are normally output on a
standard file called the Standard Output File to a standard device called the
Standard Output Device. There is a standard routine to output characters to
the standard output file:

charout e character ()

There is a standard variable cucharout which contains the routine to output
characters to the Current Output File. This contains initially the routine for
the standard output file but it may be assigned to if a different output file
is to be made current. An output file is closed by outputing the terminator.
There are standard routines to output spaces or newlines to the current

output file:

sp e integer 0
n1 E integer 0

There is a standard function which outputs any item to this file in some
suitable format and produces that item unchanged as its result.

print e item item

There is a standard macro which uses print and causes the items on the
stack starting at the bottom to be printed on a newline preceded by two
asterisks. These items are removed from the stack. In a function body only
the top item of the stack is affected. This macro is denoted by the pop-2

243

PROBLEM-ORIENTED LANGUAGES

identifier = (not to be confused with the used in this manual to show the
type of functions). A semicolon is implied before and after so that immediate
evaluation can occur (see section 11.1 'Immediate evaluation').

10. MACHINE CODE

It is possible to insert sections of machine code in an imperative sequence.
The rules depend on the implementation. A code instruction is represented
by the identifier $ followed by any sequence of characters which do not
include ';'

<code instruction>::=1Nany sequence of characters other than ;>

11. MODES OF EVALUATION

11.1. Immediate evaluation
A pop-2 program consists of a sequence of imperatives and cancellations:

<program element>::=<imperative> I <cancellation>
<program>::=<program elementt>; <program>

The program elements are evaluated in sequence in the same way as an
imperative sequence. Each program element is evaluated as soon as the
terminal semicolon and a space has been read by the compiler. The body of
any function in the program element will be compiled and kept so that it may
be evaluated when that function is applied.

11.2. Macros
A Macro is a routine which is applied at compile time.
The definition of a macro routine is similar to that of any other routine

except that macro is used instead of routine and no formal parameters are
allowed.

<macro definition>::=macro <identifier>; <function body> end

A macro, like an operation, is applied whenever it is mentioned and does not
need parentheses after it.
Although a macro has no parameters the function itemread (see section

9.1 'Input') may be used to read the text items following the macro identifier.
There is a standard routine which, when applied in a macro body to a list of
text items, concatenates these items to the right of the macro identifier in
the program sequence of text items.

macresults e text item list 0

If it is applied more than once it concatenates to the right of the previously
inserted items. On exit from the macro the inserted text items are evaluated
as program.

244

BURSTALL AND POPPLESTONE

Example:

macro — -p; vars x y; itemread --+ x; itemread y;
macresults ([% "-*", y, x%])

end;
7/2 — -*q r;

This is the same as 7//2-+r-q;

The correspondence between a list of text items and pop-2 program is as
follows. Syntax words, identifiers and unquoted words are represented by
corresponding words in the list. A quoted word is represented by a word
with the word quote (consisting of the character quote) before and after it in
the list. Integers and seals are represented by integers and reals. String
constants are represented by strings.

11.3. Evaluation of program text
A standard function popval is provided which will evaluate a list of text
items treating it as a POP-2 imperative sequence. The sequence is evaluated
immediately. It may contain function definitions and assignments to current
variables. Any declarations in it which are not in a function body are global.
The list must terminate with the word goon. For the correspondence between
a list of text items and POP-2 program see section 11.2 'Macros'.
The result of the application of popval is the result of evaluating the

imperative sequence.

popval E text item list item,... ,item

Note that popval is used to evaluate an imperative sequence at run time and
the list of text items may have been produced as the result of computation.
It may temporarily affect the standard variable proglist (see section 9.1 'Input').

Example:

1 -+ a; popval([vars x; a+2 -4 x; x*x goon])
**9

The standard routine setpop may be applied in the imperative sequence.
This restores the system to execute mode. The stack is cleared. The variable
currently associated with any identifier is not altered. After setpop has been
applied the rest of the imperative sequence is ignored and all function bodies
currently being evaluated are abandoned. The system then evaluates the
next program element. setpop may also be applied in a function body.

setpop EQ ()

ACKNOWLEDGMENTS

This language is a development of R. J. Popplestone's 'Pop-l' programming
language (see the paper in this volume). The debt to the ALGOL, LISP, CPL and

245

PROBLEM-ORIENTED LANGUAGES

iswim programming languages should be obvious. We are indebted to a

number of people in this department and elsewhere for helpful discussion

and criticism, to Dr David Park who contributed to discussion of the storage

control scheme and to Mrs Margaret Pithie and Miss Eleanor Kerse who

typed this report. Mr M. Healy kindly pointed out a number of errors and

obscurities in a draft.
The work has been undertaken on a grant from the Science Research

Council under the supervision of Dr D. Michie, whose encouragement has

been invaluable.

246

